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Accurate molecular dynamics simulations are reported which quantify the contributions of two- and three-
body interactions in the gas, liquid, and solid phases of argon at both subcritical and supercritical conditions.
The calculations use an accurate two-body potential in addition to contributions from three-body dispersion
interactions from third-order triple-dipole interactions. The number dependence of three-body interactions is
quantified, indicating that a system size of at least five hundred atoms is required for reliable calculations. The
results indicate that, although the contribution of three-body interaction to the overall energy is small, three-
body interactions significantly affect the pressure at which vapor-liquid and solid-liquid transitions are ob-
served. In particular, three-body interactions substantially increase the pressure of the freezing point. Unlike
two-body interactions, which vary with both density and temperature, for a given density, three-body interac-
tions have a near-constant ‘background’ value irrespective of the temperature. Both two-body interactions and
kinetic energy have an important role in vapor-liquid equilibria whereas solid-liquid equilibria are dominated
by two-body interactions.
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I. INTRODUCTION

Molecular simulation �1� studies routinely evaluate pair-
wise interactions via an effective multibody intermolecular
potential such as the Lennard-Jones potential. The use of
effective multibody potentials provides a practical method
for calculating the physical properties of materials at a rea-
sonable computational cost. In contrast, the addition of three-
or more-body interactions remains computationally prohibi-
tive, despite improvements in algorithms and parallel com-
puting �2�. However, the use of effective intermolecular po-
tentials hides the physics involved in multibody interactions.
In the absence of external forces, the contribution of multi-
body interactions to energy can be obtained as the infinite
sum of two-, three-, four-, and higher-body interactions. For-
tunately, the magnitude �1� of successive contributions de-
clines rapidly and their signs alternate, which means that
there is a high degree of cancellation. Therefore, it is likely
that the combination of two-body and three-body interactions
is a very good approximation of the total sum of multibody
interactions. It has been documented �3–5� that three-body
interactions can make a small but significant contribution to
the energy of liquids. For example, recent work �6–11� in-
volving either the use of an accurate two-body potential in
combination with a three-body potential �6,7� or ab initio
intermolecular potentials �8–11�, has demonstrated that the
vapor-liquid equilibria of pure fluids are quite sensitive to
three-body interactions.

The aim of this work is to isolate and quantify the contri-
bution of two- and three-body interactions in gas, liquid, and
solid phases. Molecular dynamics simulations were per-
formed using accurate two-body and three-body intermo-
lecular potentials, covering a wide range of density at both
subcritical and supercritical conditions. The results can be
used to evaluate the role of two- and three-body interactions
both on vapor-liquid and solid-liquid equilibria.

II. THEORY

A. Intermolecular potentials

Two-body interactions are undoubtedly the dominant in-
fluence on the properties of fluids. Therefore, an accurate
description of two-body interactions is required before any
conclusions concerning the influence of three-body interac-
tion can be made reliably. This important pre-condition se-
verely limits the scope of systems that can be investigated. In
practice, this means that we are limited to noble gases for
which accurate two-body potentials are available. Although
ab initio two-body potentials are available for some diatomic
systems such as hydrogen and nitrogen, they are generally of
lesser quality than noble gas potentials. Details of the inter-
molecular potentials have been discussed elsewhere �7� and
therefore only a brief outline is given here. The two-body
interactions of argon are well represented by the Barker-
Fisher-Watts �BFW� potential �12� which is a linear combi-
nation of the Barker-Pompe �13� �uBP� and Bobetic-Barker
�14� �uBB� potentials

u2�r� = 0.75uBB�r� + 0.25uBP�r� , �1�

where the potentials of Barker-Pompe and Bobetic-Barker
have the following form:

u2�r� = ���
i=0

5

Ai�z − 1�iexp���1 − z�� − �
j=0

2
C2j+6

� + z2j+6� .

�2�

In Eq. �2�, z=r /rm where rm is the intermolecular separation
at which the potential has a minimum value and the other
parameters are obtained by fitting the potential to experimen-
tal data for molecular beam scattering, second virial coeffi-
cients, and long-range interaction coefficients. The contribu-
tion from repulsion has an exponential dependence on
intermolecular separation and the contribution to dispersion
of the C6, C8, and C10 coefficients are included. The only
difference between the Barker-Pompe and Bobetic-Barker
potentials is that a different set of parameters is used in each*Email address: RSadus@swin.edu.au
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case. The values of these parameters �12� are summarized in
Table I.

Different types of interaction are possible depending on
the distribution of multipole moments between the atoms
�15–17�. Marcelli and Sadus �7� evaluated the contributions
from third-order interactions involving dipoles and quadru-
poles in addition to the fourth-order triple dipole contribu-
tion. There is a high degree of cancellation of the multipole
terms, which means that the third-order triple dipole term
alone is a good representation of three-body dispersion
interactions. Bukowski and Szalewicz �18� have reported
ab initio calculations for phase behavior of argon, which also
demonstrate that the total three-body nonadditive effect can
be largely attributed to triple dipole interactions. In view of
this, we have only considered contributions from third-order
triple-dipole interactions in this work.

The triple-dipole potential can be evaluated from the for-
mula proposed by Axilrod and Teller �AT� �19�:

uDDD�ijk� =
vDDD�ijk��1 + 3 cos �i cos � j cos �k�

�rijrikrjk�3 �3�

where vDDD�ijk� is the nonadditive coefficient �20�, and the
angles and intermolecular separations refer to a triangular
configuration of atoms.

B. Simulation details

NVT molecular dynamics simulations were performed for
108, 256, 500, and 864 argon atoms at different temperatures
and reduced densities ranging from 0.03 to 1.3. The starting
structure was a face centered cubic lattice. The equations of
motion were integrated by a fourth order Gear predictor-
corrector scheme �1� with a reduced integration time step of
0.001. The first 50 000 time steps of each trajectory were
used to equilibrate the system, and a further 200 000 time
steps were carried out to calculate average values. Adopting
the common practice of molecular simulation, the tempera-
ture �T*=kBT /��, density ��*=��3, where � is the distance at
which the two-body potential has a value of zero�, pressure
�p*= p�3 /��, and energy �E*=E /�N� are reported in reduced
units relative to the intermolecular parameters of the BFW
potential.

Periodic boundary conditions were applied. The BFW
two-body potential was truncated at half the box length and
long-range corrections were used to recover the full contri-
bution to the intermolecular potential. A cutoff distance of a
quarter of the box length was used for three-body interac-
tions from the AT potential. It is very well known that, for
periodic systems involving pairwise interactions, the cut-off
distance for the simulation must not exceed half of the box
length. However, as discussed elsewhere �7�, when three-
body interactions are involved the cutoff distance for the
three-body term must not exceed a quarter of the box length.
If this distance is exceeded, the triplets obtained will not be
correctly imaged. Three-body calculations were only per-
formed when all three intermolecular separations were
within the cutoff distance and long-range corrections were
not used. A feature of the calculations reported here is that
contributions of two- and three-body interactions to both en-

ergy and pressure were obtained accurately. The standard
errors in the energies and pressures were typically both less
than 0.1%.

III. RESULTS AND DISCUSSION

A. Influence of system size

The effect of system size on properties obtained from
pairwise interactions is well known �1�. In contrast, we are
not aware of any systematic investigation of the system-size
dependency of three-body interactions. Figure 1�a� illustrates
the two-body energy obtained for systems of 108, 256, 500,
and 864 atoms at densities covering gas, liquid, and solid
phases. The discontinuity in the energy signifies the occur-
rence of solid-liquid phase transition. The relative percentage
differences of two-body energies with respect to the largest
system are presented in Fig. 1�b�, which indicates that the
largest deviations occur at either low or high densities. In
between these extremes, the effect of system size is largely
independent of density. For most practical purposes, a system
size of 500 atoms is sufficient to obtain reasonable results.

The effect of system size on three-body energies is illus-
trated in Fig. 2. Comparing the data in Fig. 2 with the cor-
responding data in Fig. 1, it appears that the size of the
system has a much greater influence on three-body energy
than on two-body energy. In particular, the three-body energy
obtained for 108 atoms display very large deviations from
the results obtained for larger number of atoms. Furthermore,
the difference in the 256 atom calculations relative to calcu-
lations with either 500 or 864 atoms is much larger than the
corresponding two-body calculations. A possible explanation
for these discrepancies is that, for small systems, signifi-

TABLE I. Summary of the intermolecular potential parameters
used in this work.

Argona

vDDD�a.u.�b 518.3

� /k�K� 142.095

� �Å� 3.3605

rm�Å� 3.7612

Barker-Pompe Bobetic-Barker

� 12.5 12.5

� 0.01 0.01

A0 0.2349 0.29214

A1 −4.7735 −4.41458

A2 −10.2194 −7.70182

A3 −5.2905 −31.9293

A4 0.0 −136.026

A5 0.0 −151.0

C6 1.0698 1.11976

C8 0.1642 0.171551

C10 0.0132 0.013748

aTwo-body parameters from Ref. �12�.
bFrom Ref. �20�.
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cantly fewer triplets are encountered within the cutoff dis-
tance. In view of this, a system size of 500 atoms appears to
be the minimum requirement to obtain reasonably accurate
results. We note that to minimize computation time, three-
body simulations have been reported previously in the litera-
ture with fewer than 500 atoms. In some cases, the conclu-
sions reached in these earlier simulations may need to be
revised to account for the significant influence of system size
on three-body interactions.

The effect of system size on the total potential energy is
illustrated in Fig. 3�a�. In this case, the size dependency of
the results is relatively small. The relative percentage differ-
ences of the total potential energies are shown in Fig. 3�b�.
At medium to high densities the relative deviations of the
total potential energy are small both in absolute terms and in
comparison with either the deviations observed for two-body
or three-body energies. This indicates that, to some extent,
the fluctuations of two-body and three-body potential ener-
gies with system size cancel each other at medium densities.
Indeed, the system size dependence of the two-body � three

body potential is similar to that exhibited by effective multi-
body potentials such as the Lennard-Jones potential. In view
of these considerations, a system size of 500 atoms repre-
sents a reasonable compromise between the need to mini-
mize both system size effects and the large computational
cost involved in performing three-body calculations.

B. Two- and three-body effects at subcritical temperatures

To study the effects of two- and three-body interactions
on gas, liquid, and solid phases, we initially performed simu-
lations at a subcritical temperature �T*=0.9914� for which
both vapor-liquid and solid-liquid equilibria could be ex-
pected at appropriate densities. Simulations at T*=0.9914
with reduced densities ranging from 0.03 to 1.3 are summa-
rized in Figs. 4–6.

The contributions of two- and three-body interactions to
the potential energy are illustrated in Fig. 4�a�. At all densi-
ties, three-body interactions make a positive contribution to

FIG. 1. �a� Comparison of two-body potential energies obtained
for ensembles with different numbers of argon atoms ��108, �256,
�500, and �864� at different densities and T*=0.9914. �b� Relative
percentage difference between two-body potential energy of differ-
ent system size and that of 864 argon atoms.

FIG. 2. �a� Comparison of three-body potential energies ob-
tained for ensembles with different numbers of argon atoms ��108,
�256, �500, and �864� at different densities and T*=0.9914. �b�
Relative percentage difference between three-body potential energy
of different system size and that of 864 argon atoms.
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the energy, which progressively increases with increasing
density. In contrast, Fig. 4�a� shows that the contribution of
two-body energy is always negative and it steadily declines
�i.e., it becomes more negative� with increasing vapor, liquid,
or metastable fluid densities. A discontinuity in the two-body
energy is observed in the vicinity of the solid-liquid transi-
tion. The formation of a face-centered cubic �fcc� solid was
observed. As discussed below, it should be noted that this
discontinuity is not the exact location of the freezing point
because it is likely that both the liquid and solid curves ex-
tend partly into metastable regions. At densities immediately
after the solid-liquid transition, the two-body energy initially
declines further, following the trend observed in the vapor
and liquid phases. However, at higher densities ��*�1.1�,
this trend is reversed and the two-body energy of the solid
phase becomes progressively larger �i.e., it becomes less
negative�. The trend in the total potential energy mirrors the
trend in the two-body energy. The effect of three-body inter-

actions is to shift the overall energy to higher values. This
effect is hardly noticeable in the vapor and liquid regions but
it is quite significant in the solid phase.

The contributions of two- and three-body interactions to
the pressure are illustrated in Fig. 4�b�. The contribution of
the kinetic term to pressure is also given for comparison.
Two-body interactions make a negative contribution to pres-
sure at all vapor and liquid phase densities ��*=0.03−0.70�.
However, in the solid phase, the two-body pressure is posi-
tive and it increases rapidly with increasing density. In con-
trast, the three-body pressure has a positive value at all den-
sities and its contribution steadily increases with density.
Although two-body interactions have the dominant influence,
the contributions of three-body interactions in the liquid
phase are important in achieving a positive overall pressure.
Furthermore, when �*�0.91, the three-body pressure ex-
ceeds the contribution of the kinetic term and it completely

FIG. 3. �a� Comparison of the total potential energies obtained
for ensembles with different numbers of argon atoms ��108, �256,
�500, and �864� at different densities and T*=0.9914. �b� Relative
percentage difference between total potential energy of different
system size and that of 864 atom system of argon.

FIG. 4. Comparison of �a� potential energies ��E2
*, �E3

*, and �
�E*=E2

*+E3
*�� and �b� pressures ��Ptotal

* , �P2
*, �P3

*, and �Pk
*� cal-

culated for a system of 500 argon atoms at different densities with
T*=0.9914.
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dominates the kinetic term in the solid phase. Indeed, at very
high densities, neglecting the kinetic term and simply com-
bining the two- and three-body terms makes a good approxi-
mation for the total pressure.

Figure 5 illustrates the pressure of the vapor and liquid
regions of the system in greater detail. A vapor-liquid phase
transition is evident from the “van der Waals loop” �21�.
Initially, the pressure increases with the increasing of density.
When �*=0.15, the pressure begins to decline, signaling the
beginning of a two-phase region of vapor and liquid coexist-
ence. The decline in pressure is subsequently reversed at
higher densities and a single-phase liquid branch is formed.
The van der Waals loop is observed both in analytical equa-
tions of state and molecular simulations. It represents a meta-
stable extension of the liquid and vapor branches inside of
the two-phase region. The van der Waals loop is not ob-
served in real systems, which display a discontinuity at the

equilibrium pressure. The equilibrium pressure can be ob-
tained by using the “Maxwell rule” �21�. At equilibrium, an
isobar passing through the van der Waals loop will result in
two regions, above and below the isobar, which must be of
equal area. If a sufficiently large number of particles are used
in the simulation, the van der Waals loop vanishes �22�,
which is consistent with experiment. Although it can be ar-
gued that the van der Waals loop observed in molecular
simulations is most commonly an artifact, it nonetheless
serves the useful purpose of signaling a phase transition in
conventional simulations.

The van der Waals loops obtained from simulations using
the total pressure �two-body�three-body�kinetic terms� and
simply the sum of the kinetic and two-body terms are com-
pared in Fig. 5�a�. It is apparent from this comparison, that
excluding three-body interactions has a large influence on the
shape and size of the van der Waals loop. In particular, the
liquid-side turning point occurs at considerably lower pres-
sures and the region of two-phase coexistence is increased
considerably. The change in the size of the two-phase region
is consistent with simulations reported elsewhere �6,7� for
two- and three-body interactions. However, it is also appar-
ent that application of the equal area rule to the two different
van der Waals loops would result in substantially different
coexistence pressures. For the two cases, the coexistence
properties were determined independently using the NVT-
Gibbs ensemble �23� algorithm. It is apparent from Fig. 5�a�
that an isobar obtained using the coexistence pressure form
Gibbs ensemble simulations that include two-body�three-
body�kinetic terms cuts the corresponding van der Waals
loop into two equal portions. In contrast, when Gibbs en-
semble simulations were performed using only two-body in-
teractions and the ideal gas term, the coexistence liquid
phase density changes substantially, but the pressure is only
slightly lowered. It is apparent from Fig. 5�a� that the small
change in coexistence pressure is inconsistent with the appli-
cation of the Maxwell equal area rule for the second van der
Waals loop, which requires a substantially lower, even nega-

FIG. 5. �a� The total pressure �Ptotal
* = P2

*+ P3
*Pk

*� �-� -� and
�P2

*+ Pk
*� �-� -� at T*=0.9914 from simulations for 500 argon atoms

between the liquid and vapor coexistence densities. The pressures
display “van der Waals” loops in the two-phase vapor-liquid region.
The equilibrium coexisting pressures for the two cases �dotted and
solid lines� were obtained from Gibbs ensemble simulations. �b�
Comparison of the various contributions to pressure.

FIG. 6. Comparison of the various contributions to pressure in
the vicinity of the solid-liquid phase transition from simulations for
500 argon atoms at T*=0.9914.
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tive pressure. This illustrates the fact that the van der Waals
loop is an artifact and that the Maxwell rule does not neces-
sarily apply to all simulation results. In particular, it appears
that the valid use of the Maxwell rule requires simulations to
include interactions other than two-body interactions such as
in the Lennard-Jones potential.

The various contributions to pressure at densities covering
the transition between vapor and liquid phases are examined
in Fig. 5�b�. The contribution of three-body interactions to
the pressure slowly increases from the vapor, vapor and liq-
uid, and liquid phase regions. However, the contributions of
the two-body and kinetic terms are of more significance to
the behavior of the system. Starting from the vapor phase,
the two-body and kinetic contributions begin to diverge rap-
idly in opposite directions. The change in the kinetic contri-
bution with respect to density is more uniform but less rapid
than the two-body term. These subtle differences in behavior
are significant because it means that the two contributions do
not cancel but instead result in the van der Waals loop. This
suggests that the two-phase vapor-liquid region depends on
the interplay between two-body interactions and kinetic

forces. In the absence of either a kinetic term or two-body
interactions, only a single phase would be observed. The role
of three-body interactions is primarily to reduce the size of
the two-phase region and to increase the coexistence pres-
sure.

Figure 6 shows the effect of various components of pres-
sure in the vicinity of the solid-liquid transition. The vicinity
of the solid-liquid transition is marked by a discontinuity in
the pressure-density behavior. A complete van der Waals
loop is not commonly observed for the solid-liquid transition
but the same considerations apply. The liquid and solid
branches extend into metastable regions, which means that
the coexistence pressure occurs at a pressure somewhat be-
low maximum pressure of the liquid branch. Three-body in-
teractions make a significant contribution to the pressure of
both the liquid and solid phases. Neither three-body interac-
tions alone nor the combination of three-body interactions
and the kinetic term can cause a solid-liquid phase transition.
In contrast, two-body interactions appear to have the control-
ling influence on the liquid-solid phase transition. The effect
of the kinetic contribution and three-body interactions is to
shift the solid-liquid phase transition to lower densities and
substantially higher pressure. The two-body interactions in-
clude a contribution from repulsive interaction, which prob-
ably has the dominant influence. This is consistent with the
observation of a solid-liquid transition for purely repulsive
hard spheres �1,24,25�. It also highlights the difference be-
tween vapor-liquid and solid-liquid equilibria. A two-phase
vapor-liquid region is formed as the consequence of the in-
terplay of two-body interactions and the kinetic term
whereas two-body interactions have the dominant influence
in causing the separation into liquid and solid phases.

C. Interatomic forces at different temperatures

The two- and three-body intermolecular potentials involve
only terms that are independent of temperature. Nonetheless,
the contributions from two- and three-body interactions can
be expected to vary with temperature because temperature
affects the interatomic separations. In Figs. 7 and 8, we re-
port results for temperatures that are subcritical �T*=0.9 and
T*=0.9914�, near critical �T*=1.2678�, and supercritical
�T*=1.4168 and T*=2.0�.

The contributions of two- and three-body interactions to
the energy of the system at various temperatures are illus-
trated in Figs. 7�a� and 7�b�, respectively. It is apparent from
Fig. 7�a� that the contribution of two-body interactions to
energy varies significantly with temperature. In general, for
any given density, the two-body contribution to energy in-
creases �i.e., it becomes less negative� as the temperature
increases. At T*=0.9 a pronounced dip in the energy-density
behavior is observed at low densities, which corresponds to
the region of two-phase coexistence. This is in part due a
more pronounced van der Waals loop that is often associated
with phase coexistence at lower temperatures �21�. At super-
critical temperatures �T*=2.0�, the liquid branch of the curve
begins to turn-upwards at lower densities. In contrast to two-
body interactions, the data in Fig. 7�b� indicate that the con-
tribution of three-body interactions to energy remains largely

FIG. 7. �a� Two-body and �b� three-body potential energies as a
function of density at different temperatures. Results are shown for
subcritical �T*=0.9���, T*=0.9914����, near critical �T*

=1.2678����, and supercritical �T*=1.4168���, T*=2.0����
temperatures.
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constant irrespective of the temperature. This probably re-
flects the fact that three-body interactions are very short-
ranged and relatively small variations in temperature do not
significantly affect the number of triplets that are within
range of the AT potential.

The contributions of two- and three-body interactions to
the pressure of the system at various temperatures are illus-
trated in Figs. 8�a� and 8�b�, respectively. The main effect
�Fig. 8�a�� of increasing temperature is to considerably in-
crease the two-body pressure in the vicinity of the solid-
liquid phase transition. In common with the three-body en-
ergy, the three-body contribution to pressure �Fig. 8�b��
remains largely constant irrespective of temperature.

The calculations did not include the effects of three-body
repulsion. The effect of three-body repulsion could at least
partially offset the influence of the AT term. Our knowledge
of three-body interactions is currently quite limited �1�. In

any case, under normal conditions, the number of triplets that
would be in sufficiently close proximity to each other for
three-body repulsion to have a significant influence is likely
to be very small. The insensitivity of three-body interactions
to temperature indirectly supports this inference. Three-body
dispersion occurs over a much larger range of interatomic
separations than three-body repulsion but despite this,
changes in temperature did not affect the magnitude of their
contribution. Therefore, the effect of three-body repulsion is
likely to be limited to very high pressures and very high
densities. Outside of such extreme conditions, two-body re-
pulsion is likely to be a very good approximation of the
overall repulsion. In the absence of a significant contribution
from three-body repulsion, it has been demonstrated �26� that
accurate two-body potentials can be used in conjunction with
an interpolation formula for three-body interactions.

Although argon has been the focus of this work, the con-
clusions reached here are equally valid for other noble gases
such as krypton and xenon and we would expect them to
generally apply to nonpolar molecules. To test this, we partly
repeated the analysis for krypton and xenon. The krypton and
xenon calculations required modifications to the BFW poten-
tial as described elsewhere �3�. The results for both krypton
and xenon were qualitatively very similar to the argon re-
sults.

IV. CONCLUSIONS

To accurately determine the contribution of three-body
interactions, a system size of at least 500 atoms is required.
The contribution of three-body interactions increases pro-
gressively with density. At subcritical temperatures, three-
body interactions can be expected to dominate the contribu-
tion of the kinetic term in the solid phase. The occurrence of
vapor-liquid equilibria can be attributed to the interplay be-
tween two-body interaction and the kinetic term. In contrast,
two-body interactions are the controlling influence on solid-
liquid equilibria. However, the inclusion of three-body inter-
actions results in a substantial increase in pressure, particu-
larly for the solid phase. The contribution of two-body
interactions varies considerably with temperature whereas
three-body interactions remain largely constant irrespective
of temperature. This means that for a given density, three-
body interactions have a near-constant “background” influ-
ence at all temperatures. The application of the Maxwell rule
for determining the coexistence pressure appears to require
the inclusion of three-body interactions or the use of effec-
tive intermolecular potentials. Although the calculations
were confined to the specific case of the noble gases, the
conclusions reached are likely to apply to materials in gen-
eral.
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FIG. 8. �a� Two-body and �b� three-body pressures as a function
of density at different temperatures. Results are shown for subcriti-
cal �T*=0.9���, T*=0.9914����, near critical �T*=1.2678����, and
supercritical �T*=1.4168���, T*=2.0���� temperatures.
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